Портал садовода - Fiora24

Питание люминисцентных ламп. Определяем оптимальную схему включения люминесцентных ламп Лампы дневного света люминесцентные без стартера

Энергосберегающие люминесцентные светильники все больше вытесняют с прилавков устаревшие лампы накаливания. И не удивительно, ведь они позволяют значительно сэкономить на оплате электроэнергии, да и покупать и менять их нужно не так часто. При этом свечение люминесцентной лампы обладает гораздо лучшими эргономичными показателями: оно приятнее глазу, не так вредно для него, как желтый свет от ламп накаливания.

Там, где необходимо регулярно освещать рабочую область и длительное время работать при искусственном освещении, оптимальным вариантом будет лампа дневного света, схема подключения которой имеет свои особенности. Кому-то может показаться недостатком то, что подключение таких ламп имеет некоторые нюансы, но ознакомившись с подробными инструкциями и изображениями, подключить такой светильник сможет практически каждый.

Для подключения люминесцентных светильников (линейных ламп) с электромагнитным пускорегулирующим аппаратом (ПРА, дроссель) необходимо использовать стартеры. Для подключения одиночного светильника рассмотрим пример со стартером S10. Современная конструкция в союзе с невозгораемым внешним диэлектрическим корпусом из макролона делают этот прибор одним из самых надежных и востребованных в своей нише.

Функции стартера в схеме следующие:

  • обеспечение к.з. в цепи для облегчения зажигания за счет разогрева электродов лампы;
  • обеспечение пробоя газового промежутка путем разрыва цепи после достаточного нагрева электродов, благодаря чему вызывается высоковольтный импульс и собственно пробой.

Дроссель (ПРА) необходим для выполнения следующих задач:

  • ограничение тока при замыкании стартерных электродов;
  • за счет э.д.с. самоиндукции, возникающей в момент размыкания стартерных электродов, генерируется необходимый импульс напряжения для пробоя газоразрядной лампы;
  • обеспечение стабильного горения духового разряда после зажигания лампы.

Для приведенной ниже схемы взята лампа мощностью 36(40)Вт, поэтому необходим дроссель (ПРА) такой же мощности и стартер S10, мощность которого 4-65 Вт.

Подключение необходимо провести в соответствии со схемой на рисунке, а именно:

  1. к штыревым выходным контактам линейной люминесцентной лампы, являющимся выводами нити накаливания колбы, подключить параллельно стартер;
  2. для подключения стартера использовать по одному штыревому выводу на каждом конце лампы;
  3. к оставшимся свободным контактам лампы подключается, также параллельно сети, индукционный дроссель (ПРА);
  4. параллельно питающим выходам (контактам) лампы подключается непременно : он будет отвечать за компенсацию мощности (реактивной), а также за снижение помех в электросети.

Подключение ламп дневного света без стартера с помощью ЭПРА

Электронная пускорегулирующая аппаратура (ЭПРА) для люминесцентных источников освещения, или иначе балласт, необходима для подключения лампы к сети и выполняет по сути роль преобразователя. Необходимость этого элемента обусловлена особенностями конструкции и принципа работы самой люминесцентной газоразрядной лампы, которая представляет собой источник света с отрицательным сопротивлением.

Лампа может выйти из строя вследствие подачи на высоких по силе токов. При подключении лампы дневного света с помощью ЭПРА обеспечивается установка и сохранение в допустимых пределах параметров питающего электрического напряжения для осветительного прибора. Особенностью ЭПРА является то, что для включения лампы не нужно больше ничего, в том числе и стартера.

Бесстартерная схема включения люминесцентных ламп с применением ЭПРА обеспечивает:

  • повышение надежности и долговечности работы лампы;
  • отсутствие гула и мерцаний.

Неоспоримыми преимуществами ЭПРА являются малые габариты и более выгодная стоимость в сравнении с электромагнитными дросселями, уступающими по всем параметрам.

Соблюдение определенных рекомендаций позволит без особых усилий домашнему мастеру . Необходимо учесть тип подсветки, суммарную мощность, расчет запаса блоков питания и усилителей RGB.

Чтобы узнать, где можно применять светодиодные лампы в бытовых условиях, достаточно прочитать .

Обычно ЭПРА продаются в комплекте с необходимыми проводами и коннекторами (металлическими клипсами), а также есть модели для удобного подключения сразу двух люминесцентных ламп.

Электронная схема подключения люминесцентных светильников приведена ниже. Она актуальна для новых и значительно более энергоэфеткивных ламп типа Т8 иТ5.

Процесс запуска лампы условно можно разделить на три этапа (аналогично другим способам включения):

  • прогревание электродов для более бережного пуска, следовательно, для сохранения продолжительности жизни лампы;
  • генерация импульса высокого напряжения, необходимого для поджига;
  • стабилизация и последующая подача необходимого рабочего напряжения.

Благодаря включению в схему бесстартерной установки люминесцентных ламп микросхемы IR2153 реализована защита системы от перегорания или от последствий включения при отсутствии лампы, за счет блокировки работы силовых транзисторов.

Двухламповая схема подключения люминесцентных ламп

На примере двух 18-ваттных люминесцентных ламп рассмотрим, что необходимо для подключения и как проводится работа. Схема подключения с указанием проводов приведена ниже.

Для подключения последовательно двух люминесцентных светильников вам понадобится:

  • 2 люминесцентные лампы (в данном случае мощностью 18/20 Вт);
  • Индукционный дроссель (для описанной схемы мощность 36/40Вт);
  • 2 стартера S2 (4-22Вт).

Для начала к каждому из линейных люминесцентных светильников подключается параллельно стартер. Для этого необходимо задействовать по одному штыревому выходу с двух торцов каждой лампы. Оставшиеся свободными контакты подключаются последовательно, через индукционный электромагнитный дроссель, к сети электропитания.

Для того, чтобы компенсировать реактивную мощность, а также с целью снизить помехи, регулярно возникающие в любой в электросети, подключаются конденсаторы, параллельно запитывающим контактам ламп. Однако, имейте в виду, что контакты многих стандартных бытовых выключателей, особенно недорогих, могу залипать от высоких пусковых токов.

Водителям и автолюбителям часто приходится сталкиваться с решением вопроса — . Существует несколько способов это сделать: как с помощью дополнительных приборов, так и без них.

О различных методах проверки генератора можно узнать , а правильно установить к домашней сети генератор поможет полезное .

Современная пускорегулирующая аппаратура имеет небольшие габариты и устроена таким образом, чтобы не просто подключать светильники, но и обеспечивать надежность и безопасность работы схем, защиту от перепадов напряжения и других факторов. С помощью электронных схем можно реализовать подключение более сложных систем, например, подсветку рекламных стендов, организовывать освещение больших промышленных или складских помещений.

Также люминесцентные технологии и подключение линейных источников света используется в медицинских заведениях, офисных помещениях. Тут пускорегулирующая аппаратура позволяет обеспечить бесперебойное освещение, безопасность, легкость и оперативность замены сгоревших (выработавших свой ресурс) ламп.
При этом особенности конструкции самих ламп и электронных современных дросселей обеспечивают высокую эффективность и экономичность использования таких технологий. Поэтому очевидна тенденция повсеместного перехода на современные экологичные и экономичные люминесцентные светильники.

Схемы и способы подключения не сложны, требуют минимум оборудования и доп. элементов, которые всегда находятся в открытой продаже.

Видеообзор с описанием одного из способов включения лампы дневного света — от 220 Вольт

Недавно посмотрел на целую коробку сгоревших энергосберегающих ламп, в основном с хорошей электроникой, но перегоревшими нитями накала люминисцентной лампы, и подумал – надо куда-то всё это добро применить. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов.

И хотя зажигание с холодными электродами является для более тяжелым режимом, чем включение обычным образом, этот метод позволяет ещё долгое время использовать люминисцентную лампу для освещения. Как известно, зажигание лампы с холодными электродами требует повышенного напряжения до 400...600 В. Реализуется это простым выпрямителем, напряжение выхода которого будет почти в два раза выше входного сетевого 220В. В качестве балласта устанавливается обычная маломощная лампочка накаливания, и хотя использование лампы вместо дросселя снижает экономичность такого светильника, если использовать лампы накаливания на напряжение 127 В и её включить в цепь постоянного тока последовательно с лампой, то будем иметь достаточную яркость.


Диоды любые выпрямительные, на напряжение от 400В и ток 1А, можно и советские коричневые КЦ-шки. Конденсаторы так-же с рабочим напряжением не менее 400В.


Данное устройство работает как удвоитель напряжения, выходное напряжение которого приложено к катоду - аноду ЛДС. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой и напряжение одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30 - 80 Вт, имеющих рабочее напряжение в среднем около 100 В. При таком включении схемы, световой поток лампы накаливания будет составлять примерно четверть от потока ЛДС.


Для люминисцентной лампоы мощностью 40 Вт необходима лампа накаливания 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. А для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания - около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность - 34 % от номинальной.

Предлагаем два варианта подключения люминисцентных ламп, без использования дросселя.

Вариант 1.

Все люминесцентные светильники, работающие от сети переменного тока (кроме светильников с высокочастотными преобразователями), излучают пульсирующий (с частотой 100 пульсаций в секунду) световой поток. Это действует утомляюще на зрение людей, искажает восприятие вращающихся узлов в механизмах.
Предлагаемый светильник собран по общеизвестной схеме электропитания люминесцентной лампы выпрямленным током, отличающейся введением в нее конденсатора большой емкости марки К50-7 для сглаживания пульсаций.

При нажатии на общую клавишу (см. схему 1) срабатывает кнопочный выключатель 5В1, подсоединяющий светильник к электросети, и кнопка 5В2, замыкающая своими контактами цепь накала люминесцентной лампы ЛД40. При отпускании клавиш выключатель 5В1 остается включенным, а кнопка SВ2 размыкает свои контакты, и от возникающей ЭДС самоиндукции лампа зажигается. При вторичном нажатии на клавишу выключатель SВ1 размыкает свои контакты, и светильник гаснет.

Описание включающего устройства не привожу из-за его простоты. Для равномерного износа нитей накала лампы полярность ее включения следует менять примерно через 6000 часов работы.Световой поток, излучаемый светильником, практически не имеет пульсаций.

Схема 1. Подключения люминисцентной лампы с перегоревшей нитью (вариант 1.)

В таком светильнике можно применять даже лампы с одной перегоревшей нитью. Для этого ее выводы замыкают на цоколе пружинкой из тонкой стальной струны, и лампа вставляется в светильник так, чтобы на замкнутые ножки поступал «плюс» выпрямленного напряжения (верхняя нить на схеме).
Вместо конденсатора марки КСО-12 на 10000 пф, 1000 В может быть использован конденсатор из вышедшего из строя стартера для ЛДС.

Вариант 2.

Основная причина выхода из строя люминесцентных ламп та же, что и ламп накаливания — перегорание нити накала. Для стандартного светильника люминесцентная лампа с такого рода неисправностью, конечно же, непригодна, и ее приходится выбрасывать. Между тем по другим параметрам ресурс лампы с перегоревшей нитью накала часто остается далеко не выработанным.
Одним из способов «реанимации» люминесцентных ламп является применение холодного (мгновенного) зажигания. Для этого хотя бы один из катодов должен об-
ладать эмиссионной активностью (см. схему, реализующую указанный способ).

Устройство представляет собой диодно-конденсаторный умножитель с кратностью 4(см.схему 2). Нагрузкой служит цепь из последовательно соединенных газоразрядной лампы и лампы накаливания. Их мощности одинаковы (40 Вт), номинальные напряжения питания также близки по величине (соответственно 103 и 127 В). Вначале при подаче переменного напряжения сети 220 В устройство работает как умножитель. В результате к лампе оказывается приложенным высокое напряжение, которое и обеспечивает «холодное» зажигание.

Схема 2. Еще один вариант подключения люминисцентной лампы с перегоревшей нитью.

После возникновения устойчивого тлеющего разряда устройство переходит в режим двухполупериодного выпрямителя, нагруженного активным сопротивлением. Эффективное напряжение на выходе мостовой схемы практически равно сетевому. Оно распределяется между лампами Е1.1 и Е1.2. Лампа накаливания выполняет функцию токоограничивающего резистора (балласта) и вместе с тем она используется как осветительная, что повышает КПД установки.

Заметим, что люминесцентная лампа представляет фактически своего рода мощный стабилитрон, так что изменения величины питающего напряжения сказываются главным образом на свечении (яркости) лампы накаливания. Поэтому, когда напряжение сети отличается повышенной нестабильностью, лампу Е1_2 нужно взять мощностью 100 Вт на напряжение 220 В.
Совместное применение двух разнотипных источников света, взаимодополняющих друг друга, приводит к улучшению светотехнических характеристик: уменьшаются пульсации светового потока, спектральный состав излучения ближе к естественному.

Устройство не исключает возможности использования в качестве балласта и типового дросселя. Его включают последовательно на входе диодного моста, например, в разрыв цепи вместо предохранителя. При замене диодов Д226 на более мощные — серии КД202 или блоки КД205 и КЦ402 (КЦ405) умножитель позволяет питать люминесцентные лампы мощностью 65 и 80 Вт.

Правильно собранное устройство не требует наладки. В случае нечеткого зажигания тлеющего разряда либо при отсутствии такового вообще при номинальном сетевом напряжении следует изменить полярность подсоединения люминесцентной лампы. Предварительно необходимо произвести отбор перегоревших ламп для выявления возможности работать в данном светильнике.

Люминесцентные лампы подключаются в соответствии с несколько более сложной схемой по сравнению со своими ближайшими «родственниками» — лампами накаливания. Для зажигания ламп люминесцентного типа, в цепь должны быть включены пусковые устройства, от качества которых напрямую зависит срок эксплуатации светильников.

Чтобы разобраться в особенностях схем, надо в первую очередь изучить устройство и механизм действия подобных приборов.

Кратко об особенностях работы ламп


Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.

Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.

Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и

Цены на люминесцентные лампы

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Стартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Второй шаг

На оставшиеся свободными контакты подключаем .

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Подключение через современный электронный балласт

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Цены на электронные балласты для люминесцентных ламп

Электронный балласт для люминесцентных ламп

Порядок подключения

Все необходимые коннекторы и провода обычно идут в комплекте с электронным балластом. Со схемой подключения вы можете ознакомиться на представленном изображении. Также подходящие схемы приводятся в инструкциях к балластам и непосредственно осветительным приборам.

В такой схеме лампа включается в 3 основные стадии, а именно:

  • электроды прогреваются, благодаря чему обеспечивается более бережный и плавный пуск и сохраняется ресурс прибора;
  • происходит создание мощного импульса, требующегося для поджига;
  • значение рабочего напряжение стабилизируется, после чего напряжение подается на светильник.

Современные схемы подсоединения ламп исключают необходимость применения стартера. Благодаря этому риск перегорания балласта в случае запуска без установленной лампы исключается.

Отдельного внимания заслуживает схема подсоединения сразу двух люминесцентных лампочек к одному балласту. Приборы подключаются последовательно. Для выполнения работы нужно подготовить:

  • индукционный дроссель;
  • стартеры в количестве двух штук;
  • непосредственно люминесцентные лампы.

Последовательность подключения

Первый шаг. К каждой лампочке подсоединяется стартер. Соединение параллельное. В рассматриваемом примере стартер подключаем на штыревой выход с обоих торцов осветительного прибора.

Второй шаг. Свободные контакты подсоединяются к электросети. При этом соединение выполняется последовательно, посредством дросселя.

Третий шаг. Параллельно к контактам осветительного прибора подсоединяются конденсаторы. Они будут уменьшать выраженность помех в электросети и компенсировать возникающую реактивную мощность.

Важный момент! В обычных бытовых выключателях, в особенности это характерно для бюджетных моделей, контакты могут залипать под воздействием повышенных стартовых токов. Ввиду этого для использования в комплексе с люминесцентными осветительными приборами рекомендуется использовать только специально предназначенные для этого высококачественные .

Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов.

Удачной работы!

Видео – Схема подключения люминесцентных ламп

Лампы дневного света (ЛДС) - это первые экономичные приборы, которые появились после традиционных светильников с нитью накаливания. Они относятся к газоразрядным устройствам, где обязательно требуется элемент, ограничивающий мощность в электрической цепи.

Назначение дросселя

Дроссель для ламп дневного света управляет напряжением, подаваемым на электроды лампы. Кроме того, у него есть следующие назначения:

  • защита от скачков напряжения;
  • разогрев катодов;
  • создание высокого напряжения для запуска лампы;
  • ограничение силы электрического тока после пуска;
  • стабилизация процесса горения лампы.

Для экономии дроссель подключается на две лампы.

Принцип действия электромагнитного пускорегулирующего устройства (ЭмПРА)

Первая которая была создана и применяется до сих пор, включает элементы:

  • дроссель;
  • стартер;
  • два конденсатора.

Схема лампы дневного света с дросселем подключается в сеть на 220 В. Все детали, соединенные вместе, называются электромагнитным балластом.

При подаче питания замыкается цепь вольфрамовых спиралей лампы, и включается стартер в режиме тлеющего разряда. Через лампу ток пока не проходит. Нити постепенно разогреваются. Контакты стартера в исходном состоянии разомкнуты. Один из них выполнен биметаллическим. Он сгибается при нагревании от тлеющего разряда и замыкает цепь. При этом ток возрастает в 2-3 раза и катоды лампы разогреваются.

Как только замкнутся контакты стартера, разряд в нем прекращается и начинает остывать. В результате подвижный контакт размыкается и происходит самоиндукция дросселя в виде значительного импульса напряжения. Его достаточно, чтобы электроны пробили газовую среду между электродами и лампа зажглась. Через нее начинает проходить номинальный ток, который затем снижается в 2 раза по причине падения напряжения на дросселе. Стартер постоянно остается в выключенном состоянии (контакты разомкнуты), пока ЛДС горит.

Таким образом, балласт запускает лампу и в дальнейшем поддерживает ее в активном состоянии.

Достоинства и недостатки ЭмПРА

Электромагнитный дроссель для ламп дневного света отличается низкой ценой, простотой конструкции и высокой надежностью.

Кроме того, имеются недостатки:

  • пульсирующий свет, приводящий к усталости глаз;
  • до 15 % теряется электроэнергия;
  • шумы в момент запуска и при работе;
  • лампа плохо запускается при низкой температуре;
  • большие размеры и вес;
  • длительный запуск лампы.

Обычно гудение и мерцание лампы происходят при нестабильном питании. Балластники производят с разными уровнями шума. Чтобы его уменьшить, можно выбрать подходящую модель.

Лампы и дроссели подбираются равными друг другу по мощности, иначе срок службы светильника значительно сократится. Обычно их поставляют в комплекте, а замену балласта делают устройством с теми же параметрами.

В комплекте с ЭмПРА стоят недорого, и для них не нужна настройка.

Для балластника характерным является потребление реактивной энергии. Для снижения потерь параллельно сети питания подключается конденсатор.

Электронный балласт

Все недостатки электромагнитного дросселя необходимо было устранить, и в результате исследований был создан электронный дроссель для ламп дневного света (ЭПРА). Схема представляет собой единый блок, производящий запуск и поддерживание процесса горения путем формирования заданной последовательности изменения напряжения. Подключить его можно с помощью прилагаемой к модели инструкции.

Дроссель для ламп дневного света электронного типа имеет достоинства:

  • возможность мгновенного запуска или с любой задержкой;
  • отсутствие стартера;
  • отсутствие моргания;
  • повышенная светоотдача;
  • компактность и легкость устройства;
  • оптимальные режимы работы.

ЭПРА дороже электромагнитного устройства из-за сложной электронной схемы, которая включает фильтры, коррекцию коэффициента мощности, инвертор и балласт. В некоторых моделях устанавливается защита от ошибочного запуска светильника без ламп.

В отзывах пользователей говорится об удобстве применения ЭПРА в энергосберегающих ЛДС, которые встраиваются непосредственно в цоколи для обычных стандартных патронов.

Как запустить люминесцентную лампу с помощью ЭПРА?

При включении от электронного балласта на электроды подается напряжение, и происходит их разогрев. Затем на них поступает мощный импульс, зажигающий лампу. Он образуется путем создания колебательного контура, входящего в резонанс перед разрядом. Таким путем хорошо подогреваются катоды, испаряется вся ртуть в колбе, благодаря чему происходит легкий запуск лампы. После возникновения разряда резонанс колебательного контура тут же прекращается и напряжение снижается до рабочего.

Принцип работы ЭПРА похож на вариант с электромагнитным дросселем, так как лампа запускается которое затем снижается до постоянной величины и поддерживает разряд в лампе.

Частота тока достигает 20-60 кГц, за счет чего мерцание исключено, а КПД становится выше. В отзывах часто предлагается заменить электромагнитные дроссели на электронные. Важно, чтобы они подходили по мощности. Схема может создавать мгновенный пуск или с постепенным нарастанием яркости. Холодный пуск производить удобно, но при этом срок службы светильника становится намного меньше.

Лампа дневного света без стартера, дросселя

ЛДС можно включать без громоздкого дросселя, используя вместо него простую лампу накаливания с аналогичной мощностью. В данной схеме стартер также не нужен.

Подключение производится через выпрямитель, в котором напряжение удваивается с помощью конденсаторов и поджигает лампу без разогрева катодов. Последовательно с ЛДС через фазный провод включается лампа накаливания, ограничивающая ток. Конденсаторы и диоды выпрямительного моста следует подбирать с запасом по допустимому напряжению. При питании ЛДС через выпрямитель колба с одной стороны скоро начнет темнеть. В таком случае надо изменить полярность питания.

Дневного света без дросселя, где вместо него применяется активная нагрузка, дает слабую яркость.

Если вместо лампы накаливания установить дроссель, лампа будет светиться заметно сильней.

Проверка исправности дросселя

Когда ЛДС не горит, причина кроется в неисправности электропроводки, самой лампы, стартера или дросселя. Простые причины выявляются тестером. Перед тем как проверить дроссель лампы дневного света мультиметром, следует отключить напряжение и разрядить конденсаторы. Затем переключатель прибора устанавливается в режим прозвонки или на минимальный предел измерения сопротивления и определяются:

  • целостность обмотки катушки;
  • электросопротивление обмотки;
  • межвитковое замыкание;
  • обрыв в обмотке катушки.

В отзывах предлагается проверять дроссель, подключив его к сети через лампу накаливания. При она горит ярко, а исправная - вполнакала.

При обнаружении неисправности дроссель проще заменить, поскольку ремонт может обойтись дороже.

Чаще всего в схеме выходит из строя стартер. Для проверки его работоспособности вместо него подключают заведомо исправный. Если лампа так и не зажигается, значит, причина в другом.

Дроссель также проверяют с применением исправной лампы, подключив от него два провода к ее цоколю. Если лампа загорится ярко, значит, дроссель работоспособен.

Заключение

Дроссель для ламп дневного света совершенствуется в направлении улучшения технических характеристик. Электронные устройства начинают вытеснять электромагнитные. Вместе с тем продолжают применяться старые варианты моделей в связи с их простотой и низкой ценой. Необходимо разбираться во всем многообразии типов, правильно их эксплуатировать и подключать.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении